Object-Oriented Software Engineering: An
Agile Unified Methodology (Irwin Computer
Science)

By David Kung

Engineering
Read Online ©

Object-Oriented Softwar e Engineering: An Agile Unified M ethodology
(Irwin Computer Science) By David Kung

Object-Oriented Software Engineering: An Agile Unified Methodology, presents
a step-by-step methodology - that integrates Modeling and Design, UML,
Patterns, Test-Driven Development, Quality Assurance, Configuration
Management, and Agile Principles throughout the life cycle. The overall
approach is casual and easy to follow, with many practical examples that show
the theory at work. The author uses his experiences as well as real-world stories
to help the reader understand software design principles, patterns, and other
software engineering concepts. The book also provides stimulating exercises that
go far beyond the type of question that can be answered by simply copying
portions of the text.

i Download Object-Oriented Software Engineering: An Agile Uni ...pdf

@ Read Online Object-Oriented Software Engineering: An Agile U ...pdf

http://mbooknom.men/go/best.php?id=0073376256
http://mbooknom.men/go/best.php?id=0073376256
http://mbooknom.men/go/best.php?id=0073376256
http://mbooknom.men/go/best.php?id=0073376256
http://mbooknom.men/go/best.php?id=0073376256
http://mbooknom.men/go/best.php?id=0073376256
http://mbooknom.men/go/best.php?id=0073376256
http://mbooknom.men/go/best.php?id=0073376256
http://mbooknom.men/go/best.php?id=0073376256
http://mbooknom.men/go/best.php?id=0073376256
http://mbooknom.men/go/best.php?id=0073376256

Object-Oriented Software Engineering: An Agile Unified
Methodology (Irwin Computer Science)

By David Kung

Object-Oriented Software Engineering: An Agile Unified M ethodology (Irwin Computer Science) By
David Kung

Object-Oriented Software Engineering: An Agile Unified Methodology, presents a step-by-step methodol ogy
- that integrates Modeling and Design, UML, Patterns, Test-Driven Development, Quality Assurance,
Configuration Management, and Agile Principles throughout the life cycle. The overall approach is casual
and easy to follow, with many practical examples that show the theory at work. The author uses his
experiences as well as real-world stories to help the reader understand software design principles, patterns,
and other software engineering concepts. The book also provides stimulating exercises that go far beyond the
type of question that can be answered by simply copying portions of the text.

Object-Oriented Softwar e Engineering: An Agile Unified Methodology (Irwin Computer Science) By
David Kung Bibliography

- Sales Rank: #706593 in Books

- Brand: Brand: McGraw-Hill Science/Engineering/Math
- Published on: 2013-01-22

- Original language: English

- Number of items: 1

- Dimensions: 9.40" hx 1.20" w x 7.60" |, 2.70 pounds

- Binding: Hardcover

- 720 pages

i Download Object-Oriented Software Engineering: An Agile Uni ...pdf

@ Read Online Object-Oriented Software Engineering: An Agile U ...pdf

http://mbooknom.men/go/best.php?id=0073376256
http://mbooknom.men/go/best.php?id=0073376256
http://mbooknom.men/go/best.php?id=0073376256
http://mbooknom.men/go/best.php?id=0073376256
http://mbooknom.men/go/best.php?id=0073376256
http://mbooknom.men/go/best.php?id=0073376256
http://mbooknom.men/go/best.php?id=0073376256
http://mbooknom.men/go/best.php?id=0073376256

Download and Read Free Online Object-Oriented Software Engineering: An Agile Unified
Methodology (Irwin Computer Science) By David Kung

Editorial Review

Review

"It has been two years since my graduation. | really enjoyed OOSE and Design Patterns classes. | still
remember the first day how | learned to create Use Cases from requirements. As a software devel oper, |
follow your teaching in every project. The methodology that | leaned has helped me design/devel op software
inaRIGHT WAY. In every project | had worked on, | use STEP BY STEP DESIGN methodology that |
leaned in your classes. My project lead is so glad to see professional documents ... THANK Y OU for the
knowledge that you shared with us." - from an undergraduate alumnus

"I would like to say 'thank you' for the way you designed and taught our classes. The two classes | took with
you - OO concepts and Design Patterns are helping me earning 'bread and butter' every day. | worked as a
consultant for past few yearsin different companies and | realized the process you taught is far more
advanced than they follow here in real world - which is very good and helpful. | got chance to suggest even
more experienced people out here in the field. | am very grateful to you." - from an undergraduate alumnus

"We are using your methodology on our project. It's gone very well so far. We are currently in the
implementation phase. They have alot of good design documentation. I'm thinking of setting agoal thisyear
for each group to do at least one project using your methodology." - from alarge multinational company

"Dr. Kung taught an eight week (32 hours) course to our team of 40 software engineers last summer. The
methodology and patterns are currently being used in several projects of our embedded and simulation lines
of products. We successfully completed a major project using this methodology and see significant
productivity and quality improvements with very few integration and verification defectsin comparison to
similar projects we have done before. | highly recommend this to any one developing and managing
software." - from the project manager of alarge multinational manufacturing company

From the Author

The writing of the book has been motivated by years of unsuccessful search for an OO software engineering
textbook that

(1) teaches students practical, up-to-date problem-solving skills and solid theoretical foundations,

(2) isinteresting and easy to learn, and

(3) contributes to the student's long term career growth.

Astheinstructor, and director of the ABET accredited software engineering program, | feel obligated to
develop the needed teaching material that fulfills these goals. The materia presented in the book is the result
of years of effort and continual improvements, based on my observation of students' performance, and the
feedback received from students.

The book is aso written for instructors who want to switch to an agile software engineering approach.
Software engineers and students who are puzzled by the problems faced in design, implementation and
testing and who want to improve their OO development capabilities will find the book helpful. Finally, the
book also devotes separate chapters for system engineering, software quality assurance, testing object-
oriented and web applications, software maintenance, software configuration management, software project
management, and software security.

From the Inside Flap

PREFACE

Background

Computers are widely used in all sectors of our society, performing avariety of functions with the
application software running on them. As aresult, the market for software engineersis booming. The March
2006 issue of the Money Magazine ranked software engineer as the number 1 of the 50 best jobsin U.S.
According to Bureau of Labor Statistics (BLS) 2010-2020 projections, the total number of jobsin application
development software engineers and system analyst positions is expected to increase from 520,800 to
664,500 (27.6%) and from 544,400 to 664,800 (22.10%), respectively. To be able to perform the work
required of an application development software engineer or systems analyst, an education in software
engineering is highly desired. However, according to the data released by BL'S ("Earned Awards and
Degrees, by Field of Study, 2005-2006"), only 160 bachelor and 600 master's degrees in software
engineering, and 10,289 bachelor and 4,512 master's degrees in computer science were awarded in 2006.
Thus, thereis a significant gap between the demand and supply, especialy for graduates with a software
engineering degree.

Many people do not know the scope and usefulness of software engineering as a practice, and the discipline
is often misunderstood. Many media outlets seem to define software engineering as writing Java programs.
Some students think that software engineering includes everything related to software. Others think that
software engineering is drawing UML diagrams, as the following story illustrates. Several years ago, after
thefirst class of an object-oriented software engineering (OOSE) course, a student said to me, "Professor,
you know that this will be an easy course for me because we've drawn lots of UML diagrams before." At the
end of the semester, the student came to me again and said, "Professor, | want to tell you that we had worked
very hard but we learned alot about OO design. It is not just drawing UML diagrams as | thought.” So what
is software engineering? As adiscipline, it encompasses research, education and application of engineering
processes, methodol ogies, quality assurance, and project management to significantly increase software
productivity and software quality while reducing software cost and time to market.

OOSE isabranch of software engineering that is characterized by its view of the world as consisting of
objects relating to and interacting with each other. The advent of the C++ programming language in the
1980s marked the beginning of the OOSE era. Since then, software production began its unprecedented
world-wide growth and was further accelerated by the creation and world-wide adoption of the unified
modeling language (UML) and the unified process (UP). Strictly speaking, a software process describes the
phases and what should be done in each phase. It does not define (in detail) how to perform the activitiesin
each phase. A modeling language, such as UML, defines the notations, syntax and semantics for
communicating and documenting analysis and design ideas. UML and UP are good and necessary but not
sufficient. Thisis because how to produce the analysis and design ideas required to draw meaningful UML
diagramsis missing.

Motivation

To fill the gaps discussed in the last paragraph, we need a methodology or a"cookbook." Unlike a process, a
methodology is a detailed description of the steps and procedures or how to carry out the activities to the
extent that a beginner can follow to produce and deploy the desired software system. Without a
methodology, a beginning software engineer would have to spend a few years of on-job training to learn OO
design, implementation and testing skills.

The writing of the book is also motivated by emerging interests in agile processes, design patterns and test
driven development (TDD). Agile processes emphasize teamwork, design for change, rapid deployment of
small increments of the software system, and joint development with the customer and users. Design patterns
are effective design solutions to common design problems. Design patterns promote software reuse and
improve team communication. TDD advocates testable software, requires test scripts to be produced before
the implementation so that the latter can be tested immediately and frequently.

As an analogy, consider the development of an amusement park. The overall process includes the following

phases. planning, public approval, analysis and design, financing, construction drawings, construction,
procurement of equipment, installation of equipment, pre-opening, and grand opening. However, knowing
the overall process is not enough. The development team must know how to perform the activities of the
phases. For example, the planning activities include development of initial concept, feasibility study, and
master plan generation. The theme park team must know how to perform these activities. The analysis and
design activities include "requirements acquisition" from stakeholders, site investigation, design of park
layout, design of theming for different areas of the park, creating models to study the layout design and
theming, and producing the master design. Again, the theme park team must know how to perform these
activities to produce the master design. Unlike a process that describes the phases of activities, a
methodology details the steps and procedures or how to perform the activities.

The development of an amusement park is a multi-year project and costs billions of dollars. The investor
wants the park to generate revenue as early as possible; but with the above process, the investor has to wait
until the entire park is completed. Once the master design is finalized, it cannot be modified easily due to the
restrictions imposed by the conventional process. If the park does not meet the expectations of the
stakeholders, then changes are costly once the park is completed.

Adgile processes are aimed to solve these problems. With an agile process, alist of preliminary theme park
requirementsis acquired quickly and allowed to evolve during the devel opment process. The amusement and
entertainment facilities are then derived from the requirements and carefully grouped into clusters of
facilities. A plan to develop and deploy the clustersin relatively short periods of time is produced --- that is,
rapid deployment of small increments. Thus, instead of afinalized master design, the development process
designs and deploys one cluster at atime. Asthe clusters of facilities are deployed and operational, feedback
is sought and changes to the requirements, the development plan, budget and schedule are worked out with
the stakeholders --- that is, joint development. In addition, the application of architectural design patterns
improves quality and ability of the park to adapt to changing needs --- that is, design for change. Teamwork
is emphasized because effective collaboration and coordination between the teams and team members ensure
that the facilities will be developed and deployed timely and seamlessly. The agile process has a number of
merits. The investor can reap the benefits much earlier because the facilities are operational as early as
desired and feasible. Since a small number of the facilitiesis developed and deployed at atime, errors can be
corrected and changes can be made more easily.

In summary, ...

Audiences, Organization, and Acknowledgment are omitted due to limit on space.

Users Review
From reader reviews:
Brandon Li:

Why don't make it to become your hahit? Right now, try to ready your time to do the important work, like
looking for your favorite reserve and reading a reserve. Beside you can solve your short lived problem; you
can add your knowledge by the reserve entitled Object-Oriented Software Engineering: An Agile Unified
Methodology (Irwin Computer Science). Try to make the book Object-Oriented Software Engineering: An
Agile Unified Methodology (Irwin Computer Science) as your friend. It meansthat it can to be your friend
when you feel alone and beside that course make you smarter than previously. Yeah, it is very fortuned for
you. The book makes you much more confidence because you can know anything by the book. So , we need
to make new experience and also knowledge with this book.

Esmeralda Rossman:

The actual book Object-Oriented Software Engineering: An Agile Unified Methodology (Irwin Computer
Science) will bring that you the new experience of reading a book. The author style to elucidate theideais
very unique. Should you try to find new book you just read, this book very ideal to you. The book Object-
Oriented Software Engineering: An Agile Unified Methodology (Irwin Computer Science) is much
recommended to you you just read. Y ou can aso get the e-book through the official web site, so you can
quicker to read the book.

Oliver Crites:

Reading a book to become new life style in thisyr; every people loves to examine abook. When you learn a
book you can get alots of benefit. When you read publications, you can improve your knowledge, simply
because book has alot of information in it. The information that you will get depend on what sorts of book
that you have read. If you need to get information about your analysis, you can read education books, but if
you act like you want to entertain yourself read afiction books, these us novel, comics, in addition to soon.
The Object-Oriented Software Engineering: An Agile Unified Methodology (Irwin Computer Science) will
give you a new experience in reading through a book.

Jodi Dunn:

That e-book can make you to feel relax. Thiskind of book Object-Oriented Software Engineering: An Agile
Unified Methodology (Irwin Computer Science) was multi-colored and of course has pictures on there. As
we know that book Object-Oriented Software Engineering: An Agile Unified Methodology (Irwin Computer
Science) has many kinds or genre. Start from kids until young adults. For example Naruto or Investigation
company Conan you can read and think you are the character on there. Therefore not at all of book tend to be
make you bored, any it makes you feel happy, fun and loosen up. Try to choose the best book for you and try
to like reading that will.

Download and Read Online Object-Oriented Softwar e Engineering:
An Agile Unified Methodology (Irwin Computer Science) By David
Kung #Y S2GDPXUCOA

Read Object-Oriented Software Engineering: An Agile Unified
Methodology (Irwin Computer Science) By David Kung for online
ebook

Object-Oriented Software Engineering: An Agile Unified Methodology (Irwin Computer Science) By David
Kung Free PDF dOwnlOad, audio books, books to read, good books to read, cheap books, good books, online
books, books online, book reviews epub, read books online, books to read online, online library, greatbooks

to read, PDF best books to read, top books to read Object-Oriented Software Engineering: An Agile Unified

Methodology (Irwin Computer Science) By David Kung books to read online.

Online Object-Oriented Software Engineering: An Agile Unified Methodology (Irwin
Computer Science) By David Kung ebook PDF download

Object-Oriented Softwar e Engineering: An Agile Unified Methodology (Irwin Computer Science) By
David Kung Doc

Object-Oriented Software Engineering: An Agile Unified M ethodology (Irwin Computer Science) By David Kung
M obipocket

Object-Oriented Software Engineering: An Agile Unified M ethodology (Irwin Computer Science) By David Kung EPub

Y S2GDPXUCOA: Object-Oriented Software Engineering: An Agile Unified Methodology (Irwin Computer Science) By
David Kung

